3 research outputs found

    Pain Level Detection From Facial Image Captured by Smartphone

    Get PDF
    Accurate symptom of cancer patient in regular basis is highly concern to the medical service provider for clinical decision making such as adjustment of medication. Since patients have limitations to provide self-reported symptoms, we have investigated how mobile phone application can play the vital role to help the patients in this case. We have used facial images captured by smart phone to detect pain level accurately. In this pain detection process, existing algorithms and infrastructure are used for cancer patients to make cost low and user-friendly. The pain management solution is the first mobile-based study as far as we found today. The proposed algorithm has been used to classify faces, which is represented as a weighted combination of Eigenfaces. Here, angular distance, and support vector machines (SVMs) are used for the classification system. In this study, longitudinal data was collected for six months in Bangladesh. Again, cross-sectional pain images were collected from three different countries: Bangladesh, Nepal and the United States. In this study, we found that personalized model for pain assessment performs better for automatic pain assessment. We also got that the training set should contain varying levels of pain in each group: low, medium and high

    SmartHeLP: Smartphone-based Hemoglobin Level Prediction Using an Artificial Neural Network

    Get PDF
    Blood hemoglobin level (Hgb) measurement has a vital role in the diagnosis, evaluation, and management of numerous diseases. We describe the use of smartphone video imaging and an artificial neural network (ANN) system to estimate Hgb levels non-invasively. We recorded 10 second-300 frame fingertip videos using a smartphone in 75 adults. Red, green, and blue pixel intensities were estimated for each of 100 area blocks in each frame and the patterns across the 300 frames were described. ANN was then used to develop a model using the extracted video features to predict hemoglobin levels. In our study sample, with patients 20-56 years of age, and gold standard hemoglobin levels of 7.6 to 13.5 g/dL., we observed a 0.93 rank order of correlation between model and gold standard hemoglobin levels. Moreover, we identified specific regions of interest in the video images which reduced the required feature space

    Activity Detection Using Time-Delay Embedding in Multi-modal Sensor System

    No full text
    About two billion people in this world are using smart devices where significant computational power, storage, connectivity, and built-in sensors are carried by them as part of their life style. In health telematics, smart phone based innovative solutions are motivated by rising health care cost in both the developed and developing countries. In this paper, systems and algorithms are developed for remote monitoring of human activities using smart phone devices. For this work, time-delay embedding with expectation-maximization for Gaussian Mixture Model is explored as a way of developing activity detection system. In this system, we have developed lower computational cost algorithm by reducing the number of sensors
    corecore